Python-科学计算-pandas-15-df输出Excel和解析Excel

系统:windows 7语言版本:anaconda3-4.3.0.1-windows-x86_64编辑器:pycharm-community-2016.3.2pandas:0.19.2

这个系列讲讲Python的科学计算及可视化今天讲讲pandas模块将Df输出到Excel文件中,以及读取Excel中数据

Part 1:场景介绍

Df数据较多时,通过print输出效果不好的时候,可以考虑将其输出为Excel文件,或者纯粹是为了输出Excel文件很多输入文件都是Excel格式的,通过pandas如何解析

Part 2:代码

代码语言:javascript代码运行次数:0运行复制
import pandas as pdimport osdict_1 = {"time": ["2019-11-02", "2019-11-03", "2019-11-04", "2019-11-05",                   "2019-12-02", "2019-12-03", "2019-12-04", "2019-12-05"],          "pos": ["A", "A", "B", "B", "C", "C", "C", "D"],          "value1": [10, 20, 30, 40, 50, 60, 70, 80]}df_1 = pd.DataFrame(dict_1, columns=["time", "pos", "value1"])print("原数据", "\n", df_1, "\n")# 输出到Excelcurrent_address = os.path.dirname(os.path.abspath(__file__))excel_name = "df.xlsx"excel_address = os.path.join(current_address, excel_name)df_1.to_excel(excel_address)excel_name_2 = "df_2.xlsx"excel_address_2 = os.path.join(current_address, excel_name_2)df_2 = df_1.head(3)df_2.to_excel(excel_address_2)# 读Excel数据df_3 = pd.read_excel(excel_address)print(df_3)excel_name_4 = "test.xlsx"excel_address_4 = os.path.join(current_address, excel_name_4)df_4 = pd.read_excel(excel_address_4, sheetname="ceshi", header=0)print(df_4)

代码截图

excel_address

立即学习“Python免费学习笔记(深入)”;

excel_address_2

test.xlsx

代码运行命令窗口输出

Part 3:部分代码解读

输出Excel:
df_1.to_excel(excel_address)
,通过to_excel函数即可,若只是看一下数据结构,可以只输出Df的一部分,
df_2 = df_1.head(3)
即表示df_1的前3行读入Excel:
df_3 = pd.read_excel(excel_address)
,通过pd.read_excel,默认读取第1张表。当被读取Excel有多张表格时,可以指定拟读取工作表,
sheetname="ceshi"
df_4 = pd.read_excel(excel_address_4, sheetname="ceshi", header=0)
,即该函数有多个参数可以根据需要进行设置

read_excel参数

长按图片识别二维码,关注本公众号Python 优雅 帅气